Optical forces and torques on realistic plasmonic nanostructures: a surface integral approach.
نویسندگان
چکیده
We develop a novel formalism to calculate the optical forces and torques on complex and realistic nanostructures by combining the surface integral equation (SIE) technique with Maxwell's stress tensor. The optical force is calculated directly on the scatterer surface from the currents obtained from the SIE, which does not require an additional surface to evaluate Maxwell's stress tensor; this is especially useful for intricate geometries such as plasmonic antennas. SIE enables direct evaluation of forces from the surface currents very efficiently and accurately for complex systems. As a proof of concept, we establish the accuracy of the model by comparing the results with the calculations from the Mie theory. The flexibility of the method is demonstrated by simulating a realistic plasmonic system with intricate geometry.
منابع مشابه
Modelling of plasmonic systems: advanced numerical methods and applications
Metallic nanostructures interact in complex ways with light, forming the subject of plasmonics and bringing novel physical phenomena and practical applications. The fundamental and practical importance of plasmonics necessitates the development of a multitude of simulation techniques. Surface integral equation (SIE) is a numerical method which is particularly suited for simulating many plasmoni...
متن کاملInternal optical forces in plasmonic nanostructures.
We present a computational study of the internal optical forces arising in plasmonic gap antennas, dolmen structures and split rings. We find that very strong internal forces perpendicular to the propagation direction appear in these systems. These internal forces show a rich behaviour with varying wavelength, incident polarisation and geometrical parameters, which we explain in terms of the po...
متن کاملSimulation of Surface Plasmon Excitation in a Plasmonic Nano-Wire Using Surface Integral Equations
In this paper, scattering of a plane and monochromatic electromagnetic wave from a nano-wire is simulated using surface integral equations. First, integral equationsgoverning unknown fields on the surface is obtained based on Stratton-Cho surface integral equations. Then, the interaction of the wave with a non-plasmonic as well as a palsmonic nano-wire is considered. It is shown that in scatter...
متن کاملUltrasensitive optical shape characterization of gold nanoantennas using second harmonic generation.
Second harmonic generation from plasmonic nanoantennas is investigated numerically using a surface integral formulation for the calculation of both the fundamental and the second harmonic electric field. The comparison between a realistic and an idealized gold nanoantenna shows that second harmonic generation is extremely sensitive to asymmetry in the nanostructure shape even in cases where the...
متن کاملPhotoinduced Force Mapping of Plasmonic Nanostructures.
The ability to image the optical near-fields of nanoscale structures, map their morphology, and concurrently obtain spectroscopic information, all with high spatiotemporal resolution, is a highly sought-after technique in nanophotonics. As a step toward this goal, we demonstrate the mapping of electromagnetic forces between a nanoscale tip and an optically excited sample consisting of plasmonic...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Optics letters
دوره 39 16 شماره
صفحات -
تاریخ انتشار 2014